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New formulations for the algebraic multigrid (AMG) method are
presented. A new interpolation operator is developed, in which the
weighting could be negative. Numerical experiments demonstrate
that the use of negative interpolation weights is necessary in some
applications. New approaches to construct the restriction operator
and the coarse-grid equations are discussed. Two new AMG meth-
ods are proposed. Theoretical study and convergence analysis of
the AMG methods are presented. The main contributions of this
paper are to improve the convergence rate and to extend the range
of applications of an AMG method. Numerical experiments are re-
ported for matrix computations that resulted from partial differential
equations, signal processing, and queueing network problems. The
success of the proposed new AMG algorithms is clearly demon-
strated by applications to non-diagonally dominant matrix problems
for which the standard AMG method fails to converge. © 1996 Aca-

demic Press, Inc.

1. INTRODUCTION

The multigrid method has been applied widely in many
fields. The main advantage of this method is its asymptoti-
cally optimal convergence, i.e., the computational work
required to achieve a fixed accuracy is proportional to the
number of discrete unknowns [1]. However, the standard
multigird solver assumes some underlying geometrical
structures, such as grids etc. Consequently, users need to
be familiar with the multigrid principles and special code
has to be composed for solving different problems. Fur-
thermore, the application of the standard multigrid method
is difficult or impossible for many kinds of problems, for
example, problems with complex domain, problems using
non-uniform coarsening procedure, and purely discrete
problems.

The algebraic multigrid (AMG) method is designed to
utilize the principle of the geometrically oriented multigrid
(GMG) method to obtain a fast and automatic solution
procedure for matrix computations. The basic idea of an
AMG method was first introduced by Brandt, McCormick,
and Ruge [2], and the method was subsequently developed
by Ruge and Stiben. An efficient AMG algorithm for
M-matrices is described in [3]. In [4-6], we improve the
interpolation operator and present different algorithms to

construct the coarse grid equations. The comparison be-
tween the GMG and AMG methods is given in Table L.

In this paper, we present another approach to construct
the coarse grid equations and compare the performance
of various AMG algorithms. The new AMG methods im-
prove the convergence rate and extend the range of appli-
cations of an AMG method. In Section 2, the basic AMG
algorithm is described. Three AMG methods are described
in Section 3. In Section 4, a theoretical analysis of conver-
gence for the AMG methods is presented. Computational
results are then reported in Section 5. Finally, summary
and concluding remarks are given in Section 6.

2. THE BASIC AMG ALGORITHM

Consider the system of linear equations
(2.1)

Where A = (di/')an, U B (ul, Uy, uey Lln)T, F = (fla fz,
f)T. A sequence of systems of equations is generated as

A"U™ = F™, (2.2)
where A" = (al), xn ,» U" = (uf, u%, .., uy)', F" =
(13 e i) m =1,2, ., M,n=n >np >+ >
n,, A = A, U' = U, F' = F. These equations formally
play the same role as the coarse grid equations defined in
the GMG method. A grid ()" can be regarded as a set of
unknowns u/* (1 = j = ny,).

The coarse grid {)*! is chosen as a subset in (", which
is denoted by C™. The remainder subset )" — C” is de-
noted by F. A point i is said to be strongly connected to
j, if

(—aff) = 6-max(=af), 0<b=1 (2.3)

Let §7" denote the set of all strongly connection points
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TABLE I
Comparison between the GMG and the AMG

GMG method AMG method

Solved problem Continuous problem Linear system of alge-
braic equations

Only entries of the
matrix

Fixed

Geometrical structure
of the problem
vary for each problem

Used information

Smoothing operator

Program Compose program for  Only one program for
each problem different problems
Efficiency Very good Good

of the point i and let C?* = C™ N S In general, C™” and
F™ are chosen so that the following criteria are satisfied:

(C1) For each i € F™, each point j € S7 should be
either in C}" or strongly connected to at least one point
in C/"

(C2) ("™ should be a maximal subset of all points with
the property that no two C-points are strongly connected
to each other.

In practice, it is impossible to strictly satisfy both criteria
(C1) and (C2) for all systems of equations. However, (C2)
is generally used as a guideline to construct C” such that
condition (C1) is held. Now define the set of points which
are strongly connected to i by S/ = {j : i € S/}, and for
a set P, let |P| denote the number of elements in P. The
following two-part process is suggested by Ruge and Stii-
ben [3]. First, a basic choice for the C-point is performed
as follows:

(1) SetC™ =, F" =, U= Q" and A = |S]| for
all i,

(2) Pick an i € U with maximal A;, and set C™
Ccmu i}, U= U — {i},

(3) Forallje ST N U, perform (4) and (5),

4) SetF"=F"U{jland U= U — {j},

(5) Forallle SN Useth, = A+ 1,

(6) Forallje SN U;set A=A — 1,

(7) If U= O, stop. Otherwise, go to (2).

The first part attempts to enforce the criterion (C2)
by distributing the C-points uniformly over the grid. The
second part is combined with the computation of interpola-
tion weights, in which the tentative F-points resulting from
the first part are tested to ensure that the criterion (C1)
holds. The new C-points will be added as necessary. It
should be noted that the steps (1)—(7) need only O(n)
operations when an efficient implementation is used.

After the coarse grid Q™! is chosen, the interpolation
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operators I7,,, restriction operator /77", and coarse grid
equations A™*! can be constructed in the preparation phase
of an AMG method. The smoothing operator G™ is chosen
as a fixed iterative procedure, for example, Gauss—Seidel
or Jacobi iteration. Once the above five components ),
7, I+, A™ G™ are known, a multigrid cycling proce-
dure can be set up in the usual manner [1].

In general, there are two phases required in an AMG
method: (1) the preparation phase or the setup phase, in
which the five components Q™, I, I"*! A™ and G™
are constructed; (2) the solver phase, i.e., the multigrid
cycling procedure, in which the system of equations is
solved.

3. AMG METHODS

In this section we describe three AMG methods. The
methods differ from each other depending on the choice
of the interpolation operators and different algorithms to
construct the coarse grid equations and the restriction op-
erators.

3.1. The Interpolation Operators

Let N = {j € Q" :j # i, a}! # 0} denote the neighbor-
hood of a point i € 0", and D; = N — C;, D{ = D; N
S,‘, D:v = D,‘ - Df

Each variable in C” interpolates directly from the corre-
sponding variable in "' with a weighting of unity, and
each variable i € F” interpolates from the smaller set
cr.

In [3], Ruge and Stuiben present the following interpola-
tion formula for the variable i € F™:

m — m,m+1
e =2 wiey,
ject

Vie Fm, 3.1)

and

1
m _— __ m m ,,m m
Wi =T Sy ag+ > ajapy/ > afi|. (32)
i ik kED? lec”
keDY

The formulae are efficient for the M-matrices. However,
when (3.1)-(3.2) is applied to general matrix problems
with positive and negative off-diagonal entries, the denom-
inator Ezec;" a7} may be small or zero. Consequently, the
AMG method could fail during the setup phase.

In [4, 6], we present a new interpolation formula. Now,
instead of using the inequality (2.3), we define a point i
which is considered to be strongly connected to j, if

(3.3)

|lai?| = 6,-max |ai|, 0<6,=1.
ki

We then introduce the following geometric assumptions:



ON THE ALGEBRAIC MULTIGRID METHOD

(G1) In the neighborhood N* of a point i € ", the
larger the quantity |a| is, the closer point j is to the point i.
(G2) An algebraically smooth error is also geometri-
cally smooth between points i and j if ajf < 0 or |a}f| is
small, and it is geometrically oscillating if aj’ > 0 is large.

Because the error e/ to be interpolated in an AMG
method is obtained after a smoothing process, it gives

allel” + 2 affe =d}'=0, VieQ”,
JENT"

which can be rewritten as

ager + Y ager + >, ayel
kecy JED] (
3.4)

+ > aper~0, VieQ"

jeDY
Let

m
_Ekecg" Ajk

é‘-"ﬁ =
Y Ekeclf”

ety
Ekeclf”

> M

7
q

aj ajil’

where /]! denotes the number of elements in a set S =
{k:k € C", a} # 0}. The quantity & indicates whether
there is a large positive entry aj; for k € S7’. By means of
the geometrical assumption (G2), it can be shown that
error between point i and j is geometrically smooth and
the extrapolation formula can be applied if & = 0.5 and
ajt < 0. The quantity n} is the ratio of |a}| to the average
value (1/17") Zyecm . It then follows from the first geo-
metrical assumption (G1) that n}} approximately gives the
ratio of the distance between j and i to the average distance
between j and the elements of the set S}'. Let

laji

h=<—"—"-, JEDI' ke CI.
8ik Ekecl’.” |al,z| J i i

Consequently, the following approximations are used in
(3.4):

(1) For points j € DY, we have

m
e,

if 17 = 0,a <0,

_am
Ci,

if 17 = 0, a >0,
m —

2 Ekeclf" ghe —epr, I} >0,7=05,a <O,

Ziecn gel s otherwise.

(3.5)
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(2) For points j € Df, more accurate approximations
are presented,
e,

2 Ekecim ghel — if 9 <0.75,&;=0.5,a]} <0,

e = Checp glielt + ), ifny>2,&0=0.5,a3 <0,

iecr ghRer, otherwise.

(3.6)

Remark. Substituting (3.5)—(3.6) into (3.4) is equiva-
lent to modifying the coefficients in (3.4) by combining the
following steps:

step (1) add —|a}|toa},Vj € DV, which is equivalent
to e" being replaced by e” or —el";

step (2) add agyi to afp, Yk € Cy"', Vj € D@, which
is equivalent to e}" being approximated by Ekeclf" ghelts

step (3) add 2af/g/t to a}}, Vk € C}", and subtract af}
froma}},Vj€ D{¥, whichis equivalent to e/" being approxi-
mated by 2 Ziecn gher — ef';

step (4) add 0.5ajgi to a%, Vk € C/, and add
0.5a} to ajf, Vj € D, which is equivalent to /" being
approximated by 0.5 (Ekec;" ghel + el");
where D) ={j:j € D,, ¢; is eliminated by the correspond-
ing step ()} (I = 1,2, 3, 4).

Thus, a new interpolation formula derived from (3.4) is
given by

er= > wperl, YieFm", (3.7)
jecr
where
ai;
ag=ap— > |a| — > af +0.5 > ajy,
e jen® jen
an=an+ E apgn +2 2 ajgi + 0.5 2 ajlght.
jen® jen® jen(

Remark. The proposed interpolation formula (3.7)-
(3.8) should be more accurate than (3.1)-(3.2) used in the
standard AMG method because of the following reasons.
First, we consider that off-diagonal elements with large
absolute values are more important than the others in the
interpolation process, whereas only negative elements with
large absolute values are being regarded as the strongly
connected points by Ruge and Stiiben. Second, two geo-
metrical assumptions are introduced in which extrapola-
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tion and averaging formulae are taken into account in
the interpolation process. This remark will be verified by
numerical experiments reported in Section 5. It can also
be shown that the new interpolation formula preserves
linear functions for M-matrix systems with zero row-sums.

3.2. The Coarse Grid and Restriction Operators

A simple approach to define the coarse grid operator
A™1 and the restriction operator 71! is by the Galerkin
type algorithm [3], in which

= (Im)t (3.9)

and

Amtt = [l gmpm (3.10)

The Galerkin type method suggested by Ruge and Stii-
ben will be referred as the first algorithm. The second
algorithm discussed in [5, 6] is to use direct approximations
based on the fine grid operator A™ to construct A”*! and
I, Assuming the operator A™ is known, we start from
the following equations:

atul + 2 ajul + E aju =7,

jec™ jEF™

iecn.  (3.11)

In order to derive the coarse grid operator A™*!, the terms
associated with u", j € F™, in the ith equation, i € C",
should be approximated. The simplest way is to use the
interpolation formula to eliminate all &}, j € F". However,
the resulting coarse grid operator could not provide a suf-
ficiently accurate correction to an approximate solution in
the fine grid. As a consequence of this, it leads to poor
convergence for the multigrid method. Alternatively, the
terms associated with ", j € F', in the ith equation can
be replaced by the jth equation without introducing any
error. Even though this operation can not eliminate all
w!,j € I, it can reduce the magnitude of the coefficient
for ", j € F™. This particularly works well if the diagonal
element is larger than the off-diagonal elements. The new
approach for constructing A™*! is thus obtained by the
following switching algorithm. The u}*, j € F", are elimi-
nated by the interpolation formula (3.7)—(3.8) if |a}'/a}}| =
6, and the u*, j € F, are replaced by means of the jth
operator when |aj'/a}| > 6,, i.e.,

> wp,

kECj

oL > gy, if |aal) > 6.

aji  aj keN,

if [aff/a| < 6y,

(3.12)

Hence the following new equations are obtained
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aPup + > aPu + > aPur=fr— Y l’f, ,IEC™,
jecm jEF™ JEF aj

(3.13)

where F7* = {j:|a}/a}| > 6,, j € F"}. The procedure is

repeated until «/", j € F™, no longer appear in the ith
equation, i € C™. Therefore,

-1 a®

22 ”f,, iecm,

I= I/EF’" //

(L), m (L), m
a,-l- u; + 2 al-/- Ll/'
jecm

(3.14)

where a{) = apt, Fi' = {j: |a{’/a| > 6,, j € F™"}. The
coarse grid operator A™*! is now defined as

Am+l = (a(l))

and the restriction operator 174! is resulted directly from
(3.14), i.e.,

L-1 (1)

22

=1 jEF"’ ]]

frt = — —=fr, e Qmrtl (3.15)

Notice that I72+! # (I, ;)T for general matrices. Since small
elements a,(f) are introduced during the process of con-
structing the coarse grid operator, a parameter 6, is used
so that small elements a{” are ignored in A™*' if
laiP1a{”] < 6,. In practice, the operator A™ is normalized
so that a = 1, Vi € ™. Thus division operations are not
required in computing the operators /72*! and A™"!,
Now, we consider the third approach for the coarse grid
operator A”*1. Let an auxiliary matrix B! = [+l A™
and By = (b7*', b5*, ..., bi*1)T. Then multiplying the
matrix (2.2) by the restriction operator 17", we get

Im+1AmUm — ]m+1 Fm

m m b

which is equivalent to
Bm+1Um — Im+1Fm

Brl=[miAm (3.16)

In order to obtain the coarse grid operator A™*!, u",
j € F™, in the equality (3.16) need to be approximated. It
follows directly from (3.16) that

(B U™y, = by tum = (I Fmy - (3.17)

and

b;nHUm — 2 bm+1 u 2 bgﬁl

i jec™

(e Z bm+1

]EFm
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The uf", j € F™, are then climinated using the inter-
polation formula (3.7)-(3.8) if |by*!| > 6, - af, and
u, j € F™, are replaced by w/ if b = 6, - af;
1.€.,

>, waadit, it by > 6 - aff,

u" = § kec; (3.18)
uf", if |by+| < 6, - a.
Substituting (3.18) into (3.17), we get
Am+1Um+1 — I%+1Fm = Fm+1‘ (319)

3.3. Three AMG Methods

Two formulae for the interpolation operator I, were
presented in Section 3.1, and different algorithms to con-
struct the coarse grid operator A”*! and the restriction
operator I"'*! were discussed in Section 3.2. Depending
upon the choice of I, I'""1, and A™"!, it leads to a
particular version of an AMG method. To avoid confusion
between various algorithms, we shall use the following
defintions to signify each method:

Method Interpolation Restriction Coarse grid equation
I (3.1)-(3.2) (3.9) (3.10)
II (3.7)-(3.8) (3.9) (3.16)-(3.19)
III (3.7)-(3.8) (3.11)-(3.15)

Notice that, Method I is the standard AMG algorithm
proposed by Ruge and Stiiben [3], in which the interpola-
tion formula is given by (3.1)-(3.2) and a Galerkin-type
algorithm is used to define /"' and A™*!. Methods II and
III are the two new AMG methods presented in this
paper where a more accurate interpolation (3.7)—(3.8) is
applied. In Method II I7'.,; and A™"! are obtained
from (3.16)-(3.19) and (3.9); (3.11)-(3.15) are used in
Method III.

4. CONVERGENCE ANALYSIS

In this section we consider convergence analysis for the
AMG methods. Theorems 1-4 are due to Huang [11],
Ruge and Stiiben [3], and Theorems 5-8 give a theoretical
analysis for the AMG method used in conjunction with
the new interpolation formula (3.7)-(3.8) proposed in the
previous section. We shall prove that the two-level AMG
method is convergent, and the result can be extended
to multi-level AMG when certain conditions are satisfied.
The bound on the convergence factor is shown in
Theorem 7.
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Let

Gm, Am+1 — I%HA'"I%H,
(4.1)
T =" — I%H(Amﬂ)—l]mﬂAm,

denote the smoothing operator, coarse grid operator, and
(m, m + 1) the coarse grid correction operator, respec-
tively. In addition to the Euclidean inner product (-, ),
three different inner products

(u,v)o = (Du, v), (u,v); = (Au,v),
(u,v), = (D! Au, Av),

are defined, together with the corresponding norms || - |;
i=0,1,2).

First, we describe the following theorems, which are
given by Ruge and Stiiben in [3].

THEOREM 1. Let A™ > 0 and define, with any positive
vector W = (wi"),

1 m n
w27 |}’

v = max {
i

1
o 2 w;-"laz?l}.

i Qi i

Y™ = max {

Then the Gauss—Seidel relaxation satisfies

IG™e™ [t = lle™|ft — ctm [le™

2, o, > 0.

(4.2)

THEOREM 2. Let A™ > 0 and y§' = p((D™)' A). Then
Jacobi relaxation with parameter 0 < o™ = 2/y§ satisfies
42) if oy = "2 — &™yE).

THEOREM 3. Let A™ > 0 and let G™ > 0 satisfy (4.2).
Suppose that the interpolation I}, has a full rank and that,
for each e",

min [le” — Inise™ 5 = By [le”

7, (4.3)

with B,, > 0 independent of e™. Then B,, = «,,, and the
(m, m + 1) two-level convergence factor satisfies:

[G™T™y = V1 = o,/ B

In [11], Huang extends the results of Ruge and Stiiben
and the following theorem is presented.

THEOREM 4. Let A™ > 0, and assume for any given set
C™ of the C-points, that I}, is of the form (3.1) with
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S¢ =1, 8" = Zgecr |wiil. Then (4.3) is satisfied if the
following two inequalities hold with 8,, > 0 independent
E E a;; |Wzk|<

of e™:
)2
m
ieF™ keCc™ | m|

=225 S la(er + er)

i j#i

(4.4)

> |a?7|>(e?”)2- (4.5)

J#i

E aj; (1 - Sm)(e:n)z =Bn 2 (alr:l -

ieF™

Remark. 1t is easy to verify that Theorem 4 holds if
the set C" is replaced by C". We will use the form of the
Theorem 4 with C".

THEOREM 5. Let A™ > 0 and assume A™ is a weakly

diagonally dominant matrix, then

Sr=1 (4.6)

for the interpolation formulae (3.7)—(3.8), where S* are
defined in Theorem 4.

Proof. Observe that

S= 3 ol = 3 2

keC; keC; ii

Using (3.8) and 2ec, gi = 1, we obtain

1

a;; — EjED,(-l) |a,-]-| - E]-EBI@)LI,-]- +0.5 EfED,(4) ai;

S =

<[ Slaf+ S Jal+2 S lal+05 3 |

JeC; jep® jep® jep®

4.7)

The weakly diagonally dominant matrix A” and a; < 0,
Vj € D® U D implies that

a; = 2 |a,]|

JEN;

2 |a,]| + 2 |a,]|

]ED(I)

+ 2 gl + 2 al + 2 agl:

/ED(Z) /ED(3 ]GD(4)

ie.,
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E |al/| + Z |all| +2 2 |al]| +05 2 |a1]|

JEG jED /ED 3) /ED(4)
=a;— 2 lag| — 2 a; +0.5 E ajj.
jep® jep® jep®

Thus, S; = 1 is proved.

THEOREM 6. Let & > 0 and 0 = y™ < 1 be fixed
constants. Assuming the C-points are picked in such a way
that, for each i € F™ and j € C!", there are

> lap| =ymay,

]EDm

> lap| = " max ay,
jeDT! jecy

(4.8)

m
Wij - a,,

|Wtr’]r'l - |a,]|

Then, if A™ is a symmetric positive definite matrix with
weakly diagonal dominance, the interpolation formula
(3.7)—(3.8) satisfy the inequalities (4.4) and (4.5) with B =
/(1 = y™)(1 + 2&™/6,).

Proof. Observe the inequality (4.5)

<a; — <z lagl + > lagl +2 > lagl +05 > |a,,|>

JEC; ]ED 2 ]ED ) ]ED(4)

a..
= ﬁ_z- <a,~i - > lay| —

jepV

z aij+0.5 2 ai,»

jep® jep®

0.5 > Iai,-l)

jep®

- E |ﬂzii|

Jeg,

2 |a,]|—2 E |al]|

]ED @ /ED <

N S N
B a; <au ; |al]|>
all
= a; — aj
a; — EjeD}U |aij| - 2/6053) a; + 0.5 E;ED,(“) a; ( ! ; | U|>

a
— ya; ( ,Z’ | ’|>

a; — al

I/\

(4.9)

The inequality (4.5) holds for any 8 = 1/(1 — v). For
the inequality (4.4), we have
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D a,llwlk|<€l [Wael l-kl )2

i€F kEC;

a;
ZEF ECE—T' <a1k+ z at]g]k 2 2 |az1|g1k

]ED( ) ]ED( )
2
W,
- 05 2 |a,-]-|g,-k> . <€i - _lk €k>
jep® Wil

2
ai; Wik
= = | |aul +2 a-«)-(e——e)
i€F keC; Qii <| w jele.| U| C ,

a;; Wik 2
= - <|al-k| + 2¢max |a,-j|> . (e,— — —ek> .
ieF kec, dii JEC; Wi

The inequality (3.3) implies that (1/6) |ax| =
maxk#i|a' s i

5,3, aie e

iEF keC;

au 1 1% 2
<2 z ( 1k|+2§'30|aik|> <ei_|w_kek>

i

i€F keC; a;;
ai; Wik 2
= 2 Z 1 + |atk| € — €k
i€F keC; aj | il

aj; 25) ( Wik )2
= 1+=)lau||\ei—7—e
;kg‘é a;; — ya; ( o | k| |Wik| ,
L (1+2)3 S faul (0 2]
=— ail | e —
11—y i€F keC; « | Wik |

=5 (R DSl a e

The inequality (4.4) is satisfied for any 8 = (1/(1 — vy))
(1 + 2&/6y). Hence the conclusion of the theorem holds

for B = (2/(1 — 7)) (1 + 2&/6,).

THEOREM 7. Assuming A™ is a symmetric positive defi-
nite matrix with weakly diagonal dominance and the C-
points are picked in such a way that, for each i € F",j €
C", then the conditions (4.8) are satisfied. Suppose that the
interpolation formulae (3.7)-(3.8) and the Gauss—Seidel
relaxation (or the Jacobi relaxation with parameter 0 <
wm < 2/y§, y§ = p((D™)—1 - A™)) are used in the AMG
method. Then the (m, m + 1)-two-level AMG algorithm is
convergent with factor |G™T"|, = V1 — a,,/B,,, where
B = 2/ —v™) (1 + 26"60y) > o, @y, Is given by
Theorem 1 or Theorem 2.

285

Proof. The theorem follows from Theorem 1-
Theorem 6.

THEOREM 8. Suppose the matrix A™ is symmetric posi-
tive definie and weakly diagonally dominant. If the condi-
tion (4.8) is satisfied and the interpolation weights of (3.7)—
(3.8) satisfy

laf| = y"|wi|a, Vi€ F™ ke Cy, (4.10)

then the coarse grid operator A"\ is also symmetric positive
definite and weakly diagonally dominant.

Proof. First, it follows from (4.1) that A™*! is symmet-
ric positive definite. Because wy, = &y (if i, k € C) and
for the reasons of symmetry, we can rewrite the entries of
the coarse grid operator A”*! in the following form:

+1 —
a??/ Ewlkal] W]l

ij

=ap+ > (whai + wia)
ieF™

+ 2 wiagwi

ieF™ jeF™

1
[w}}i <a?f + 5 arwi
ieF™

=ay+ Z

+ wif (a?ﬁ + %a?w%)]
+ > > whaliwy,
ieF™ jeF™
J#EI
where k, | € C™. By using wi/|w}! afllaf| in (4.8),
we have
e = ~2 3 ol (Jal — Sagiwn)
i€F™
= > > willal
ieF™ jeF™
J#L
and

1

= leth + 3 [l jard - Szt
iEF™

m m 1 m m

+ |wi <|aik| - Eaii|wik|>:|

+ > > willaz] lwi.

ier™ jer™
jFi
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In view of the definition of S}* and the symmetry of A™,
we obtain

a;(nkJrl _ E |arknl+]|
lec
I#k

=al— > lapl — X wil > lagl

lec™ ieF™ lec”
1#k

— > lag|Ssr+ Y (wilSray

ier™ ieF™

—wil X Splay
jeF™
J#EI

=ap,— > lapl+ > (1 —SMag

Ik ieF"

-3 [ S gl = srap+ S s;"|a:7|]

ieF™ lec” jEF™
j#i

=al— > lapl + 2 (1 —S")|ay

I#k ieFm

- > |wi (E |aty| —S?’a?>,

ieF™ I#i

(4.11)

where S7* = 1 is used. Using the inequality (4.9), we get

(1 = sylat] — i (2 o] - sra

I#i

=1 =8Pz — [wi [—a;?

+ 2 lafl + (1 - S?‘)az‘?} (4.12)

I#i
= (1= SP)la] — Wil =1~ y™)az(1 = S7)
+ (1= Spat]
= (1= S7)(lat ~ y"wila) = 0,

where the inequality (4.10) is used. Hence,

alget = > lapt| = afi = X lalil = 0.
iec ieC
Ik 1=k

Remark. In this section, a theoretical analysis of con-
vergence is presented. It has been proven that for symmet-
ric, positive definite, and weakly diagonally dominant ma-
trices, a uniform convergence is achieved for a two-level
AMG method. An important result presented in Theorem
7 is that the convergence factor of the AMG method used
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in conjunction with the new interpolation formulae (3.7)-
(3.8) is shown to be less than one. In Theorem 8, it is
proved that if A™ is symmetric, positive definite, and
weakly diagonally dominant, then these properties are pre-
served in the coarse grid operator A", Consequently,
the convergence analysis for a two-level method can be
extended to a multi-level AMG method. Our result pro-
vides the bound on the convergence factor, but it does not
guarantee that it is independent of the number of grid
levels. However, in practical computations, only a finite
number of grid levels is applied in an AMG method. For
symmetric, positive definite and weakly diagonally domi-
nant matrix problems, our numerical results given in the
next section indicate that the convergence factor is in-
deed h-independent when conditions (4.8) and (4.10) are
satisfied.

5. NUMERICAL RESULTS

A series of numerical experiments were tested on an
INDIGO?2 Silicon Graphics workstation to evaluate the
performance of the new AMG methods (Methods II and
III) proposed in this paper. Numerical results were com-
pared with those obtained using the standard AMG algo-
rithm (Method I) of Ruge and Stiiben. Particular attentions
are focused on the convergence factor and the range of ap-
plications.

The following notations are used for the results reported
in all tables:

p: asymptotic convergence factor,
t;; computing time in seconds for one V-cycle,
tp: computing time for the setup phase,

N: number of iterations for convergence defined by |||/
[ = 1076, where r" is the residual vector at the Nth iter-
ation,

EQ: total number of matrix equations,

o: ratio of the space occupied by all operators to the
space at the finest grid,

o' ratio of the total number of points on all grids to
that on the finest grid.

In all computations, the initial iteration u° is taken to
be random numbers uniformly distributed in [0, 1], and the
Gauss—Seidel relaxation is used as the smoothing operator
and 6, = 0.25. Notice that, when 6, = 0 in Method 1I,
the coarse grid equation is essentially constructed by a
Galerkin-type algorithm. Thus the main difference be-
tween Method I and Method II with 6, = O is in the
interpolation formula.

ProBLEM 1. Poisson problems on a unit square/cube
with Dirichlet boundary conditions. For two-dimensional
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TABLE II

Numerical Results for 2D-Poisson Problem
with 5-Point Stencil
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TABLE III

Numerical Results for 2D-Poisson Problem
with 9-Point Stencil

Method 0, EQ p t tp o4 o Method 0, EQ p 4 tp o4 o
1 64 X 64 0.0339 0.07 0.42 2.21 1.68 1 64 X 64 0.0904 0.07 0.46 1.36 1.36
128 X 128 0.0334 0.34 1.93 2.21 1.68 128 X 128 0.0933 0.29 2.07 1.35 1.35

1I 0 64 X 64 0.0211 0.07 0.41 2.16 1.66 11 0 64 X 64 0.0704 0.06 0.43 1.32 1.33
128 x 128 0.0215 0.33 1.65 2.18 1.67 128 X 128  0.0756 0.29 1.89 1.33 1.33

0.01 64 X 64 0.0202 0.07 0.39 2.16 1.66 0.01 64 X 64 0.0725 0.06 043 1.32 1.33

128 X 128 0.0204 0.33 1.57 2.18 1.67 128 X 128 0.0709 0.29 1.85 1.33 1.33

111 1/17 64 X 64 0.0597 0.07 0.38 2.20 1.68 111 1/17 64 X 64 0.128 0.06 0.44 1.33 1.33
128 X 128 0.0611 0.33 1.66 2.20 1.68 128 X 128  0.129 029 2.01 1.33 1.33

0.1 64 X 64 0.0576 0.06 0.38 2.20 1.68 0.1 64 X 64 0.238 0.06 042 1.32 1.33

128 X 128 0.0582 0.32 1.65 2.20 1.68 128 X 128  0.327 0.29 1.88 1.33 1.33

Poisson problems, we consider the following 5-point and
9-point stencils

-1 -1 -4 -1

1 1

el A N B
-1 -1 -4 -1

For three-dimensional problems, the 7-point difference
approximation is applied.

1
F (6ui,/,k T Ui jk — Uitk T Uijrik

—Uij-1k T Uijr+1 T Mi,j,k—l) = fi,i,k-

The computational results for these problems are given
in Tables II, III, and IV.

It follows from Tables II and III that the 9-point stencils
requires more time for relaxation on the finest grid than
the 5-point stencils, the overall computing times per cycle,
however, are actually somewhat reduced because ¢ and
o are smaller for the 9-point stencils. It is generally true
that larger stencils result in a faster coarsening step.

PrOBLEM 2. Anisotropic problems on a unit square
with Dirichlet boundary conditions. The first problem is
—8Uy — Uy = [,
where ¢ = 0.01 is used. This example demonstrates the
ability of the AMG method to tailor the coarsening step

for a given problem. Another problem with variable coef-
ficient is given as

— (10077 uy), — uy, = f.

Here, the direction and the strength of an anisotropy prob-
lem varies over the domain. The two problems are discret-
ized on a uniform grid using the 5-point stencils. The com-
putation results are given in Tables V and VI.

In a geometric multigrid, a line relaxation must be used
for the anisotropic problems in order to ensure sufficient
smoothing when a standard coarsening is used. However,
an AMG method with a fixed Gauss—Seidel relaxation can
be used to solve these problems, since the coarsening in

TABLE IV

Numerical Results for 3D-Poisson Problem
with 7-Point Scheme

Method 6, EQ p t tp ot o°
I 16 X 16 X 16 0.0263 0.11 136 3.16 1.67
24 X 24 X 24 0.0619 0.52 572 3.33 1.66

11 0 16 X 16 X 16 0.0160 0.11 1.01 2.63 1.60
24 X 24 X 24 0.0186 0.44 3.50 272 1.60

0.01 16 X 16 X 16 0.0502 0.11 0.99 2.62 1.60

24 X 24 X 24 0.1310 042 331 271 1.60

0.005 16 X 16 X 16 0.0201 0.10 0.95 2.62 1.60

24 X 24 X 24 0.0493 042 331 271 1.60

111 1/37 16 X 16 X 16 0.0583 0.11 0.99 2.84 1.65
24 X 24 X 24 0.0794 043 3.83 2.88 1.64

0.05 16 X 16 X 16 0.0772 011 090 2.79 1.65

24 X 24 X 24 0.1090 042 285 2.85 1.64
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TABLE V

Numerical Results for Anisotropic Problem
with Constant Coefficient

Method 0, EQ p t tp o4 o
1 64 X 64 0.0043 0.13 0.83 428  2.03
128 X 128 0.0076 0.67 4.14 4.65 2.04

11 0 64 X 64 0.0040 0.13 0.84 4.45 2.06
128 X 128 0.0057 0.67 4.03 4.87  2.09

0.01 64 X 64 0.0081 0.13 0.68 3.99 2.03

128 X 128 0.0237 0.67 3.12 4.51 2.08

111 1/17 64 X 64 0.0188 0.09 0.44 2.32 1.99
128 X 128 0.0187 0.42 1.78 274  2.04

0.2 64 X 64 0.0162 0.09 0.36 2.53 2.02

128 X 128 0.0181 0.40 1.78 2.63 2.03

each part of the domain is automatically adapted to the
direction of stronger connections there.

For the anisotropic problems, the complexity parameters
o/ and o of Method I1I are less than for the other meth-
ods. Hence the computing times f; and ¢p are faster, even
though the convergence factor is slower.

ProBLEM 3. Nonsymmetric problems. Consider the
convection—diffusion equation in a unit square with Dirich-
let boundary conditions

—eAu + a(x, y)u, + b(x, y)u, = f(x, y).

TABLE VI

Numerical Results for Anisotropic Problem
with Variable Coefficient

Method 01 EQ P t tp (TA ot
I 64 X 64 0.1330 0.11  0.65 354 198
128 X 128 N
II 0 64 X 64 0.1662 0.14 080 432 212
128 X 128 0.2031 059 351 457 211
0.01 64 X 64 05983 013 0.70 4.04 211
128 X 128 b
111 0.01 64 X 64 0.6814 0.11 0.66 341 1.86
128 X 128  0.8637 0.57 335 430 195
0.1 64 X 64 0.7910 0.08 034 258 1.85
128 X 128  0.8792 043 1.64 3.02 194

# Method is divergent.
® Error cannot be reduced.

CHANG, WONG, AND FU

TABLE VII

Computation Results for Nonsymmetric Problem

Method 01 EQ P t tp O'A o
1 64 X 64 0.0083 013 066 379 2.02
128 X 128 0.0289 0.60 3.78 4.04 2.02

11 0 64 X 64 0.0092 012 064 370 2.00
128 X 128  0.0144 057 3.06 396 2.01

0.01 64 X 64 0.0117 012 059 350 2.00

128 X 128 0.0167 054 260 3.71 2.01

111 1/17 64 X 64 0.0753 008 026 258 1.99
128 X 128  0.1341  0.41 136  2.70  2.00

0.01 64 X 64 0.0753  0.08 027 261 1.99

128 X 128  0.1341 041 144 275 2.00

The discrete operator is based on the 5-point finite differ-
ence approximation of the form

—& + bhu,
% —e+ah(u, — 1) - —& + ahu, |,
—e+ bh(u, — 1)
where
( ¢ . ( & .
— > — >
>ah ifah > ¢ Sbh ifbh>¢
e = { 1+ﬁ ifah < —e; My:<1+ﬁ if bh < —¢
. 1 .
= if |ah| = & = if |bh| = &.
. 2

> denotes the sum of the surrounding coefficients. In com-
putation, the functions @ and b are taken as a(x, y) =
sin(w/8), b(x, y) = cos(n/8), and e = 107>. The numerical
reults are given in Table VII.

ProBLEM 4. Biharmonic equation on a unit square. Let

Au=0 on{,
Jd

u|r’iﬂ = 0’ _u = Oa
an a0

with the following 13-point finite difference stencil:
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TABLE VIII

Computation Results for Biharmonic Problem

Method 01 EQ P N t tp U'A o
I 32 x32 088 118 003 042 225 1.72
64 X 64 0866 96 015 1.82 227 1.70
128 X 128  0.856 84 094 719 228 1.69
II 0 32 X 32 0.457 18 0.04 033 283 1.86
64 X 64 0464 18 024 157 296 1.87
128 X 128  0.493 19 1.03 6.85 3.03 1.89
0.2 32 X 32 0.894 123 0.02 012 146 1.69
64 X 64 0905 138 011 060 147 1.69
128 X 128 0.896 125 0.51 247 147 1.69
111 1/17 32 X 32 0.463 18 0.04 061 372 1.88
64 X 64 0.687 37 029 281 393 1.88
128 X 128 0.793 57 121 11.82 4.04 1.90
1/33 32 X 32 0.274 11 0.08 085 436 191
64 X 64 0.674 35 036 408 465 1.89
128 X 128  0.806 68 141 17.66 4.85 1.92
1
2 -8 2
1 -8 20 -8 1
2 -8 2
B 1 A

The resulting matrix equation is symmetric but not diag-
onally dominant. Furthermore, the linear system is very
ill-conditioned with a condition number O(h™*), whereas
the condition numbers for the previous problems are
O(h™?). Table VIII compares the performance of various
AMG methods.

From the results presented in Table VIII, we observe
that Method I gives a slow convergence factor. However,
a much faster convergence factor is achieved and this leads
to a significant saving in the number of iterations for
Method 1I, using 6; = 0. Recall that the main difference
between Method I and Method II with 6; = 0 is in the
interpolation formula. Hence, the results clearly demon-
strate the effectiveness of the new interpolation proposed
in this paper. Method II with 6; = 0.2 reduces the complex-
ity parameters o and o®, and, hence, it provides improve-
ment in the setup phase but the convergence factor is in-
creased.

ProBLEM 5. Toeplitz matrix. Signal processing prob-
lems arise in many applications, e.g., image restoration,
seismic tomography, noise reduction, system identifica-
tions, neural networking, and data compression. In these
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applications, the problem can be transformed into prob-
lems of solving a linear system Ax = b, where the n by n
coefficient matrix A is either a Toeplitz matrix or a near-
Toeplitz matrix. We now consider a simple Toeplitz
problem

A = (ai].)’ a:; = 2’(i’j)’

Y

where A is a symmetric full matrix with positive entries. In
this problem, we only consider three maximal off-diagonal
entries for each row, when the interpolation operators are
constructed. The numerical results are given in Table IX.
Method I cannot be used to solve this problem, since all
entries of the matrix are positive. In [9], we modify Method
I, and a faster convergence for more complex Toeplitz
matrices was obtained.

ProBLEM 6. Queueing network problems (singular
problems). Queueing networks are often analyzed to deter-
mine the behavior under different traffic situations. The
analysis indicates the effect of increasing servers on the
waiting times of customers and on the blocking of custom-
ers. In this problem, we have to solve a linear homogeneous
system. Now, consider an overflow queueing model [12]
and the linear system is given by

Au = (AO +R0)M = 0,
Zuizl, uiZO’

where Ay =GR I, +1,Q G, Ry = (e,ef) ® Ry, and

TABLE IX

Computation Results for Toeplitz Matrix

Method 91 EQ P t tp (J'A o
I Unable to compute

I 0 256 0.1320 0.07 0.22 1.15 1.62

512 0.1330 0.29 0.94 1.15 1.62

0.2 256 0.1290 0.07 0.19 1.15 1.62

512 0.1310 0.29 0.86 1.15 1.62

III 1/17 256 0.3850 0.06 0.20 1.14 1.58

512 0.3871 0.27 0.84 1.14 1.58

1/33 256 0.3742 0.06 0.27 1.17 1.71

512 0.3757 0.29 1.13 1.17 1.71
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TABLE X

Computation Results for Queueing Network Problem

Method 0] EQ P t tp O'A o

I 64 X 64 0291  0.08 042 223 1.69

128 X 128 a

11 0 64 X 64 0.127 010 048 240 1.72
128 X 128 0.214 038 194 249 173
0.01 64 X 64 0.164 008 046 234 1.72
128 X 128 0.246 036 180 244 1.72
111 1/17 64 X 64 0.500 009 051 3.35 1.88
128 X 128 0.707 044 228 310 1.81
1/33 64 X 64 0481 012 063 372 1.88
128 X 128 0.701 047 267 340 1.82
2 Error cannot be reduced.
AT
A At+tup 2u
A A+2u 3w
G =
A Atsu —su
A AtSsu —Ssu
= _)\ —s,uf nxn
1
-1 1 0
R] =A-
0 -1 1
L -1 04 nxn

Here, I, is an identity matrix of order n, e, denotes the
jth unit vector in R”, and &) denotes the Kronecker prod-
uct. The matrix A is of order n? by n? which is irreducible
with zero column sums, strictly positive diagonal, and non-
positive off-diagonal entries and it has a one-dimensional
null-space. The computational results for the problem with
parameters s = 5, u = 1, A = s — 3(n — 1)7! are given
in Table X.

This problem demonstrates that the new AMG algo-
rithms can directly apply to solve singular systems of equa-
tions. In [8], we modify Method II for other queueing
network problems and much faster convergence rates
are obtained.
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ProBLEM 7. Elasticity problems. Now, consider a sys-
tem of partial differential equations. The plane-stress elas-
ticity problem can be written in terms of the displacements
u and v as

— +
uxx+1Tvuyy+1Tv
1-—

1+v v
Sty + 5 Vu +v,,=g (xy)E(0,1)Xx(0,1),

Uy =1,

where v is Possion’s ratio, chosen to be 3. The Dirichlet
boundary conditions are used, and the problem is discret-
ised by a central difference:

1 1—v
ﬁ (quJ - 2141-‘]- + ui,l,j) + W (ui,jﬂ - 2ui,j + Lli’];l)

1+v
+T(vi+1,]’+l — V101~ Visrjo1 + Vi) + =fig

1—-v 1
BV (Vier,;— 205t v ) + 2 (Vijo1 — 2v;; t Vi 1)

1+v _
+ _/’l2 (Ui+1,j+1 — U141 — Uir1,j-1 + uifl,jfl) = 8i,j-

The resulting system is solved directly by AMG methods
and the numerical results are reported in Table XI.

In this problem, the complexity parameters ¢ and o
are larger compared to other problems since this is a diffi-
cult system. The convergence factors given by the Methods
II and III indicate that both methods are working very well.

Remark. From the results presented in this section, we
observe the following:

TABLE XI

Computation Results for Elastic Problem

Method 6, EQ p t tp o4 o

1 32 X32X2 0.8407 0.12 1.51 541 2.02
48 X 48 X 2 a

11 0 32 X32X2 0.1260 023 1.64 8.04 229

48 X 48 X 2 0.2070 1.11 4.09 823 2.25

0.01 32 X32X2 0.3450 0.13 0.96 5.65 2.30

48 X 48 X 2 0.5591 034 248 593 230

1T 1/17 32 X32X2 0.1700 021 1.92 940 2.49

48 X 48 X 2 0.2503 0.75 448 1053 253

1/24 32 X32X2 0.0960 024 230 10.10 2.49

48 X 48 X 2 0.1350 0.77 574 11.61 256

? Method is divergent.
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(1) When both Methods I and II are convergent,
Method II with 6, = 0 gives a faster convergence for all
problems tested here. For an ill-conditioned system such
as the biharmonic equation (see Table VIII), a significant
reduction in the convergence factor and the number of
iterations is achieved by using Method II with 6, = 0.
Notice that the improvement over Method I results are
entirely due to a more accurate interpolation formula
(3.7)-(3.8), proposed in this paper.

(2) By varying the parameter 6; in Method II, we re-
duce the complexity parameters o and o, so that less
computing time is required in the setup phase and so is
the time needed to perform one V-cycle multigrid. How-
ever, this usually leads to a larger convergence factor and,
thus, the number of iterations is increased. However, the
overall computing time may be reduced in some applica-
tions due to the improvement in the complexity param-
eters.

(3) Method III is robust and can be used to solve all
the problems presented here. However, it requires larger
complexity parameters and convergence factor.

(4) The new AMG methods II and III are superior
compared to the standard method I. It has been clearly
demonstrated by the fact that when Method I failed to
converge for difficult problems (such as Problems 5-7),
Methods II and III converge with good convergence
factors.

6. CONCLUDING REMARKS

In this paper, a new formulation for the interpolation
formula (3.7)—(3.8) is presented. The proposed formula is
compared to the standard formula (3.1)-(3.2) suggested
by Ruge and Stitben. The standard formula is of order one
and suitable for M-matrix problems. The new formula is
more accurate; it is nearly of order two and can be used
for more general matrix problems. In choosing the C-points
required in the setup phase of an AMG method, the com-
putational results demonstrate that fewer additional
C-points are introduced by the interpolation (3.7)-(3.8)
compared to those required by using (3.1)-(3.2). Conse-
quently, even though the new interpolation operator is
more complicated, the complexity parameters o, o and
the computing times in using (3.7)-(3.8), however, can be
less than those using (3.1)—(3.2). This could lead to a more
efficient implementation for an AMG method.

In the standard AMG method, a positive weighting is
always used in the interpolation operator. The proposed
new interpolation formula includes the choice of negative
weights. Indeed, theoretical analysis and our computa-
tional experience show that using negative interpolation
weights is necessary in some applications, for example,
the solutions of Toeplitz matrix and systems of partial
differential equations in elasticity problems.
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New algorithms are presented for the construction of
the restriction operator and the coarse-grid equations. The
proposed new AMG methods II and III are compared
to the standard AMG method I developed by Ruge and
Stiiben. In Method II, the parameter 6; can be chosen as
a small quantity, for example, 0.01, 0.005, 0.1, or 0.2, in
order to reduce the complexity parameters and the com-
puting time. In Method III, the parameter 6, is generally
taken to be 1/17 for 2D problems and 1/37 for 3D prob-
lems, and it can also be chosen as other values in order to
reduce the computing time or to accelerate the conver-
gence.

Numerous computational experiments are reported in-
cluding matrix solutions that resulted from partial differen-
tial equations, signal processing, and queueing network
problems. For systems of partial differential equations,
Ruge and Stiiben presented the unknown approach and
the point approach methods [3]. Here, the new AMG meth-
ods II and III are applied directly to the systems of equa-
tions such as the elasticity problem. Method III has also
been successfully tested for problems in computational
fluid dynamics, including the solutions of the system of
Euler equations [7]. From our analysis and numerical re-
sults, the following conclusions are made. The standard
AMG method I is only efficient for the M-matrix problems.
The proposed new AMG methods II and III not only can
provide a fast convergence rate, but they can also be ap-
plied to more general applications, including non-diago-
nally dominant matrices.
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