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construct the coarse grid equations. The comparison be-
tween the GMG and AMG methods is given in Table I.New formulations for the algebraic multigrid (AMG) method are

presented. A new interpolation operator is developed, in which the In this paper, we present another approach to construct
weighting could be negative. Numerical experiments demonstrate the coarse grid equations and compare the performance
that the use of negative interpolation weights is necessary in some of various AMG algorithms. The new AMG methods im-
applications. New approaches to construct the restriction operator

prove the convergence rate and extend the range of appli-and the coarse-grid equations are discussed. Two new AMG meth-
cations of an AMG method. In Section 2, the basic AMGods are proposed. Theoretical study and convergence analysis of

the AMG methods are presented. The main contributions of this algorithm is described. Three AMG methods are described
paper are to improve the convergence rate and to extend the range in Section 3. In Section 4, a theoretical analysis of conver-
of applications of an AMG method. Numerical experiments are re- gence for the AMG methods is presented. Computational
ported for matrix computations that resulted from partial differential

results are then reported in Section 5. Finally, summaryequations, signal processing, and queueing network problems. The
and concluding remarks are given in Section 6.success of the proposed new AMG algorithms is clearly demon-

strated by applications to non-diagonally dominant matrix problems
for which the standard AMG method fails to converge. Q 1996 Aca-

2. THE BASIC AMG ALGORITHMdemic Press, Inc.

Consider the system of linear equations
1. INTRODUCTION

(2.1)AU 5 F,
The multigrid method has been applied widely in many

fields. The main advantage of this method is its asymptoti-
where A 5 (aij)n3n , U 5 (u1 , u2 , ..., un)T, F 5 ( f1 , f2 , ...cally optimal convergence, i.e., the computational work
fn)T. A sequence of systems of equations is generated asrequired to achieve a fixed accuracy is proportional to the

number of discrete unknowns [1]. However, the standard
multigird solver assumes some underlying geometrical (2.2)AmUm 5 F m,
structures, such as grids etc. Consequently, users need to
be familiar with the multigrid principles and special code

where Am 5 (a m
ij )nm3nm

, Um 5 (u m
1 , u m

2 , ..., u m
nm

)T, Fm 5has to be composed for solving different problems. Fur-
( f m

1 , f m
2 , ..., f m

nm
)T, m 5 1, 2, ..., M, n 5 n1 . n2 . ? ? ? .thermore, the application of the standard multigrid method

nm , A1 5 A, U1 5 U, F1 5 F. These equations formallyis difficult or impossible for many kinds of problems, for
play the same role as the coarse grid equations defined inexample, problems with complex domain, problems using
the GMG method. A grid Vm can be regarded as a set ofnon-uniform coarsening procedure, and purely discrete
unknowns u m

j (1 # j # nm).problems.
The coarse grid Vm11 is chosen as a subset in Vm, whichThe algebraic multigrid (AMG) method is designed to

is denoted by Cm. The remainder subset Vm 2 Cm is de-utilize the principle of the geometrically oriented multigrid
noted by F m. A point i is said to be strongly connected to(GMG) method to obtain a fast and automatic solution
j, ifprocedure for matrix computations. The basic idea of an

AMG method was first introduced by Brandt, McCormick,
and Ruge [2], and the method was subsequently developed (2a m

ij ) $ u0 ? max
k?i

(2a m
ik), 0 , u0 # 1. (2.3)

by Ruge and Stüben. An efficient AMG algorithm for
M-matrices is described in [3]. In [4–6], we improve the
interpolation operator and present different algorithms to Let S m

i denote the set of all strongly connection points
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TABLE I operators I m
m11 , restriction operator I m11

m , and coarse grid
equations Am11 can be constructed in the preparation phaseComparison between the GMG and the AMG
of an AMG method. The smoothing operator Gm is chosen

GMG method AMG method as a fixed iterative procedure, for example, Gauss–Seidel
or Jacobi iteration. Once the above five components Vm,

Solved problem Continuous problem Linear system of alge- I m
m11 , I m11

m , Am, Gm are known, a multigrid cycling proce-
braic equations

dure can be set up in the usual manner [1].Used information Geometrical structure Only entries of the
In general, there are two phases required in an AMGof the problem matrix

Smoothing operator vary for each problem Fixed method: (1) the preparation phase or the setup phase, in
Program Compose program for Only one program for which the five components Vm, I m

m11 , I m11
m , Am, and Gm

each problem different problems are constructed; (2) the solver phase, i.e., the multigrid
Efficiency Very good Good

cycling procedure, in which the system of equations is
solved.

3. AMG METHODS
of the point i and let C m

i 5 C m > S m
i . In general, C m and

F m are chosen so that the following criteria are satisfied: In this section we describe three AMG methods. The
methods differ from each other depending on the choice

(C1) For each i [ F m, each point j [ S m
i should be

of the interpolation operators and different algorithms to
either in C m

i or strongly connected to at least one point
construct the coarse grid equations and the restriction op-

in C m
i erators.

(C2) C m should be a maximal subset of all points with
3.1. The Interpolation Operatorsthe property that no two C-points are strongly connected

to each other. Let N m
i 5 h j [ Vm : j ? i, a m

ij ? 0j denote the neighbor-
hood of a point i [ Vm, and Di 5 N m

i 2 Ci , D s
i 5 Di >In practice, it is impossible to strictly satisfy both criteria

Si , D w
i 5 Di 2 D s

i .(C1) and (C2) for all systems of equations. However, (C2)
Each variable in Cm interpolates directly from the corre-is generally used as a guideline to construct C m such that

sponding variable in Vm11 with a weighting of unity, andcondition (C1) is held. Now define the set of points which
each variable i [ Fm interpolates from the smaller setare strongly connected to i by S T

i 5 h j : i [ S m
j j, and for

C m
i .a set P, let uPu denote the number of elements in P. The
In [3], Ruge and Stüben present the following interpola-following two-part process is suggested by Ruge and Stü-

tion formula for the variable i [ Fm:ben [3]. First, a basic choice for the C-point is performed
as follows:

em
i 5 O

j[Cm
i

w m
ij e m11

j , ;i [ Fm, (3.1)
(1) Set C m 5 B, F m 5 B, U 5 Vm, and l 5 uS T

i u for
all i,

and
(2) Pick an i [ U with maximal li , and set C m 5

C m < hij, U 5 U 2 hij,
wm

ij 5 2
1

am
ii 1 O

k[Dw
i

am
ik
Fam

ij 1 O
k[Ds

i

am
ik am

kj@O
l[Cm

i

am
klG. (3.2)(3) For all j [ S T

i > U, perform (4) and (5),

(4) Set F m 5 F m < h jj and U 5 U 2 h jj,
(5) For all l [ S m

j > U, set ll 5 ll 1 1,
The formulae are efficient for the M-matrices. However,(6) For all j [ S m

i > U, set lj 5 lj 2 1,
when (3.1)–(3.2) is applied to general matrix problems

(7) If U 5 B, stop. Otherwise, go to (2). with positive and negative off-diagonal entries, the denom-
inator ol[Cm

i
a m

kl may be small or zero. Consequently, theThe first part attempts to enforce the criterion (C2)
AMG method could fail during the setup phase.by distributing the C-points uniformly over the grid. The

In [4, 6], we present a new interpolation formula. Now,second part is combined with the computation of interpola-
instead of using the inequality (2.3), we define a point ition weights, in which the tentative F-points resulting from
which is considered to be strongly connected to j, ifthe first part are tested to ensure that the criterion (C1)

holds. The new C-points will be added as necessary. It
uam

ij u $ u0 · max
k?i

uam
iku, 0 , u0 # 1. (3.3)should be noted that the steps (1)–(7) need only O(n)

operations when an efficient implementation is used.
After the coarse grid Vm11 is chosen, the interpolation We then introduce the following geometric assumptions:
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(G1) In the neighborhood Nm
i of a point i [ Vm, the (2) For points j [ Ds

i , more accurate approximations
are presented,larger the quantity uam

ij u is, the closer point j is to the point i.

(G2) An algebraically smooth error is also geometri-
cally smooth between points i and j if am

ij , 0 or uam
ij u is

small, and it is geometrically oscillating if am
ij . 0 is large.

em
j 5 5

2 ok[Cm
i

gm
jkem

k 2 em
i , if hm

ij , 0.75, jij $ 0.5, am
ij , 0,

As (ok[Cm
i

gm
jkem

k 1 em
i ), if hm

ij . 2, jm
ij $ 0.5, am

ij , 0,

ok[Cm
i

gm
jkem

k , otherwise.
Because the error em

i to be interpolated in an AMG
method is obtained after a smoothing process, it gives

(3.6)am
ii em

i 1 O
j[Nm

i

am
ij em

j 5 dm
i P 0, ;i [ Vm,

Remark. Substituting (3.5)–(3.6) into (3.4) is equiva-
lent to modifying the coefficients in (3.4) by combining thewhich can be rewritten as
following steps:

am
ii em

i 1 O
k[Cm

i

am
ikem

k 1 O
j[Ds

i

am
ij em

j

(3.4)

step (1) add 2uam
ij u to am

ii , ;j [ D(1)
i , which is equivalent

to em
j being replaced by em

i or 2em
i ;

step (2) add am
ij gm

jk to am
ik , ;k [ Cm

i , ;j [ D(2)
i , which1 O

j[Dw
i

am
ij em

j P 0, ;i [ Vm.
is equivalent to em

j being approximated by ok[Cm
i

gm
jkem

k ;

step (3) add 2am
ij gm

jk to am
ik , ;k [ Cm

i , and subtract am
ij

from am
ii , ;j [ D(3)

i , which is equivalent to em
j being approxi-Let

mated by 2 ok[Cm
i

gm
jkem

k 2 em
i ;

step (4) add 0.5am
ij gm

jk to am
ik , ;k [ Cm

i , and add
j m

ij 5
2ok[Cm

i
am

jk

ok[Cm
i

uam
jku

, hm
ij 5

uam
ji u lm

ij

ok[Cm
i

uam
jku

, 0.5am
ij to am

ii , ;j [ D(4)
i , which is equivalent to em

j being
approximated by 0.5 (ok[Cm

i
gm

jkem
k 1 em

i );

where D(l)
i ; h j : j [ Di , ej is eliminated by the correspond-

where lm
ij denotes the number of elements in a set Sm

ij 5 ing step (l)j (l 5 1, 2, 3, 4).
hk : k [ Cm

i , am
jk ? 0j. The quantity j m

ij indicates whether
Thus, a new interpolation formula derived from (3.4) isthere is a large positive entry am

jk for k [ Sm
ij . By means of

given bythe geometrical assumption (G2), it can be shown that
error between point i and j is geometrically smooth and
the extrapolation formula can be applied if jm

ij $ 0.5 and em
i 5 O

j[Cm
i

wm
ij em11

j , ;i [ F m, (3.7)
am

ij , 0. The quantity hm
ij is the ratio of uam

ji u to the average
value (1/lm

ij ) ok[Cm
i

uam
jku. It then follows from the first geo-

metrical assumption (G1) that hm
ij approximately gives the where

ratio of the distance between j and i to the average distance
between j and the elements of the set Sm

ij . Let
wm

ik 5
2am

ik

am
ii

, k [ Cm
i , (3.8)

gm
jk 5

uam
jku

ok[Cm
i

uam
jku

, j [ Dm
i , k [ Cm

i . am
ii 5 am

ii 2 O
j[D(1)

i

uam
ij u 2 O

j[D(3)
i

am
ij 1 0.5 O

j[D(4)
i

am
ij ,

am
ik 5 am

ik 1 O
j[D(2)

i

am
ij gm

jk 1 2 O
j[D(3)

i

am
ij gm

jk 1 0.5 O
j[D(4)

i

am
ij gm

jk .Consequently, the following approximations are used in
(3.4):

(1) For points j [ Dw
i , we have

Remark. The proposed interpolation formula (3.7)–
(3.8) should be more accurate than (3.1)–(3.2) used in the
standard AMG method because of the following reasons.
First, we consider that off-diagonal elements with large
absolute values are more important than the others in theem

j 55
em

i , if lm
ij 5 0, am

ij , 0,

2em
i , if lm

ij 5 0, am
ij . 0,

2 ok[Cm
i

gm
jkem

k 2 em
i , if lm

ij . 0, j m
ij $ 0.5, am

ij , 0,

ok[Cm
i

gm
jkem

k , otherwise.

interpolation process, whereas only negative elements with
large absolute values are being regarded as the strongly
connected points by Ruge and Stüben. Second, two geo-
metrical assumptions are introduced in which extrapola-(3.5)
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tion and averaging formulae are taken into account in
a(2)

ii um
i 1 O

j[Cm

a(2)
ij um

j 1 O
j[Fm

a(2)
ij um

j 5 fm
i 2 O

j[Fm
1

am
ij

am
jj

fm
j , i [ Cm,the interpolation process. This remark will be verified by

numerical experiments reported in Section 5. It can also
(3.13)be shown that the new interpolation formula preserves

linear functions for M-matrix systems with zero row-sums.
where F m

1 5 h j : uam
ij /am

ii u . u1 , j [ F mj. The procedure is
repeated until um

j , j [ F m, no longer appear in the ith3.2. The Coarse Grid and Restriction Operators
equation, i [ C m. Therefore,

A simple approach to define the coarse grid operator
Am11 and the restriction operator Im11

m is by the Galerkin
type algorithm [3], in which a(L)

ii um
i 1 O

j[Cm

a(L)
ij um

j 5 fm
i 2 OL21

l51
O

j[Fm
l

a(l)
ij

am
jj

f m
j , i [ Cm,

Im11
m 5 (Im

m11)T (3.9) (3.14)

and where a(1)
ij 5 am

ij , F m
l 5 h j : ua(l)

ij /a(l)
ii u . u1 , j [ F mj. The

coarse grid operator Am11 is now defined as
Am11 5 Im11

m AmIm
m11 . (3.10)

Am11 5 (a(L)
ij ),The Galerkin type method suggested by Ruge and Stü-

ben will be referred as the first algorithm. The second
and the restriction operator I m11

m is resulted directly fromalgorithm discussed in [5, 6] is to use direct approximations
(3.14), i.e.,based on the fine grid operator Am to construct Am11 and

Im11
m . Assuming the operator Am is known, we start from

the following equations: f m11
i 5 f m

i 2 OL21

l51
O

j[Fm
l

a(l)
ij

am
jj

f m
j , i [ Vm11. (3.15)

am
ii um

i 1 O
j[Cm

am
ij um

j 1 O
j[Fm

am
ij um

j 5 f m
j , i [ Cm. (3.11)

Notice that I m11
m ? (I m

m11)T for general matrices. Since small
elements a(L)

ij are introduced during the process of con-In order to derive the coarse grid operator Am11, the terms
structing the coarse grid operator, a parameter u2 is usedassociated with um

j , j [ F m, in the ith equation, i [ Cm,
so that small elements a(L)

ij are ignored in Am11 ifshould be approximated. The simplest way is to use the
ua(L)

ij /a(L)
ii u , u2 . In practice, the operator Am is normalizedinterpolation formula to eliminate all um

j , j [ F m. However,
so that am

ii 5 1, ;i [ Vm. Thus division operations are notthe resulting coarse grid operator could not provide a suf-
required in computing the operators I m11

m and Am11.ficiently accurate correction to an approximate solution in
Now, we consider the third approach for the coarse gridthe fine grid. As a consequence of this, it leads to poor

operator Am11. Let an auxiliary matrix Bm11
m 5 I m11

m Am
convergence for the multigrid method. Alternatively, the

and Bm11
m 5 (bm11

1 , bm11
2 , ..., bm11

nm11
)T. Then multiplying theterms associated with um

j , j [ F m, in the ith equation can
matrix (2.2) by the restriction operator I m11

m , we getbe replaced by the jth equation without introducing any
error. Even though this operation can not eliminate all

I m11
m AmUm 5 I m11

m F m ,um
j , j [ F m, it can reduce the magnitude of the coefficient

for um
j , j [ F m. This particularly works well if the diagonal

element is larger than the off-diagonal elements. The new which is equivalent to
approach for constructing Am11 is thus obtained by the
following switching algorithm. The um

j , j [ F m, are elimi- Bm11
m Um 5 Im11

m F m, Bm11
m ; Im11

m Am. (3.16)
nated by the interpolation formula (3.7)–(3.8) if uam

ij /am
ii u #

u1 and the um
j , j [ F m, are replaced by means of the jth In order to obtain the coarse grid operator Am11, um

j ,
operator when uam

ij /am
ii u . u1 , i.e., j [ F m, in the equality (3.16) need to be approximated. It

follows directly from (3.16) that

(Bm11
m Um)i 5 bm11

i Um 5 (Im11
m F m)i (3.17)

um
j 5 5Ok[Cj

wjkum
k , if uam

ij /am
ii u # u1 ,

f m
j

am
jj

2
1

am
jj
O

k[Nj

am
jkum

k , if uam
ij /am

ii u . u1 .

(3.12)

and

bm11
i Um 5 O

j
bm11

ij um
j 5 O

j[Cm

bm11
ij um

j 1 O
j[Fm

bm11
ij um

j .
Hence the following new equations are obtained
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The um
j , j [ F m, are then eliminated using the inter- Let

polation formula (3.7)–(3.8) if ubm11
ij u . u1 ? am

ii , and
um

j , j [ F m, are replaced by um
i if ubm11

ij u # u1 ? am
ii ; Gm, Am11 5 Im11

m AmIm
m11 ,

(4.1)i.e.,
Tm 5 Im 2 Im

m11(Am11)21Im11
m Am ,

denote the smoothing operator, coarse grid operator, and
um

j 55O
k[Cj

wjkum
k , if ubm11

ij u . u1 ? am
ii ,

um
i , if ubm11

ij u # u1 ? am
ii .

(3.18) (m, m 1 1) the coarse grid correction operator, respec-
tively. In addition to the Euclidean inner product (?, ?),
three different inner products

Substituting (3.18) into (3.17), we get
(u, v)0 5 (Du, v), (u, v)1 5 (Au, v),

(u, v)2 5 (D21 Au, Av),Am11Um11 5 I m11
m F m ; F m11. (3.19)

are defined, together with the corresponding norms i ? ii3.3. Three AMG Methods
(i 5 0, 1, 2).

Two formulae for the interpolation operator Im
m11 were First, we describe the following theorems, which are

presented in Section 3.1, and different algorithms to con- given by Ruge and Stüben in [3].
struct the coarse grid operator Am11 and the restriction

THEOREM 1. Let Am . 0 and define, with any positiveoperator Im11
m were discussed in Section 3.2. Depending

vector Wm 5 (wm
i ),upon the choice of Im

m11 , Im11
m , and Am11, it leads to a

particular version of an AMG method. To avoid confusion
between various algorithms, we shall use the following

c(m)
2 5 max

i
H 1

wm
i am

ii
O
j,i

wm
j uam

ij uJ,defintions to signify each method:

Method Interpolation Restriction Coarse grid equation
c(m)

1 5 max
i
H 1

wm
i am

ii
O
j.i

wm
j uam

ij uJ.
I (3.1)–(3.2) (3.9) (3.10)
II (3.7)–(3.8) (3.9) (3.16)–(3.19)
III (3.7)–(3.8) (3.11)–(3.15) Then the Gauss–Seidel relaxation satisfies

Notice that, Method I is the standard AMG algorithm iGmemi2
1 # iemi2

1 2 am iemi2
2, am . 0. (4.2)

proposed by Ruge and Stüben [3], in which the interpola-
tion formula is given by (3.1)–(3.2) and a Galerkin-type THEOREM 2. Let Am . 0 and c m

0 $ r((Dm)21 A). Then
algorithm is used to define Im11

m and Am11. Methods II and Jacobi relaxation with parameter 0 , gm # 2/c m
0 satisfies

III are the two new AMG methods presented in this (4.2) if am # gm(2 2 gmc m
0 ).

paper where a more accurate interpolation (3.7)–(3.8) is
THEOREM 3. Let Am . 0 and let Gm . 0 satisfy (4.2).applied. In Method II Im

m11 and Am11 are obtained
Suppose that the interpolation Im

m11 has a full rank and that,from (3.16)–(3.19) and (3.9); (3.11)–(3.15) are used in
for each eh,Method III.

4. CONVERGENCE ANALYSIS
min iem 2 Im

m11em11i2
0 # bm iemi2

1 , (4.3)

with bm . 0 independent of em. Then bm $ am , and theIn this section we consider convergence analysis for the
(m, m 1 1) two-level convergence factor satisfies:AMG methods. Theorems 1–4 are due to Huang [11],

Ruge and Stüben [3], and Theorems 5–8 give a theoretical
analysis for the AMG method used in conjunction with iGmT mi1 # Ï1 2 am/bm .
the new interpolation formula (3.7)–(3.8) proposed in the
previous section. We shall prove that the two-level AMG In [11], Huang extends the results of Ruge and Stüben
method is convergent, and the result can be extended and the following theorem is presented.
to multi-level AMG when certain conditions are satisfied.
The bound on the convergence factor is shown in THEOREM 4. Let Am . 0, and assume for any given set

Cm of the C-points, that Im
m11 is of the form (3.1) withTheorem 7.
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Sm
i # 1, Sm

i 5 ok[Cm
i

uwm
iku. Then (4.3) is satisfied if the O

j[Ci

uaiju 1 O
j[D(2)

i

uaiju 1 2 O
j[D(3)

i

uaiju 1 0.5 O
j[D(4)

i

uaiju
following two inequalities hold with bm . 0 independent
of em:

# aii 2 O
j[D(1)

i

uaiju 2 O
j[D(3)

i

aij 1 0.5 O
j[D(4)

i

aij .

O
i[Fm

O
k[Cm

am
ii uwm

ikuSem
i 2

wm
ik

uwm
iku

em
k D2

Thus, Si # 1 is proved.

THEOREM 6. Let j m . 0 and 0 # c m , 1 be fixed#
bm

2 O
i
O
j5/ i

uam
ij uSem

i 1
am

ij

uam
ij u

em
j D2

, (4.4)
constants. Assuming the C-points are picked in such a way
that, for each i [ F m and j [ C m

i , there are

O
i[Fm

am
ii (1 2 Sm

i )(em
i )2 # bm O

i
Sam

ii 2 O
j5/ i

uam
ij uD(em

i )2. (4.5) O
j[Dm

i

uam
ij u # c mam

ii , O
j[Dm

i

uam
ij u # j m max

j[Cm
i

am
ij ,

(4.8)
Remark. It is easy to verify that Theorem 4 holds if

the set C m is replaced by C m
i . We will use the form of the

wm
ij

uwm
ij u

5 2
am

ij

uam
ij u

.
Theorem 4 with C m

i .

THEOREM 5. Let Am . 0 and assume Am is a weakly
Then, if Am is a symmetric positive definite matrix withdiagonally dominant matrix, then
weakly diagonal dominance, the interpolation formula
(3.7)–(3.8) satisfy the inequalities (4.4) and (4.5) with b 5

Sm
i # 1 (4.6) (2/(1 2 c m))(1 1 2j m/u0).

Proof. Observe the inequality (4.5)
for the interpolation formulae (3.7)–(3.8), where Sm

i are
defined in Theorem 4.

aii(1 2 Si)
Proof. Observe that

# aii 2
aii

aii
SO

j[Ci

uaiju 1 O
j[D(2)

i

uaiju 1 2 O
j[D(3)

i

uaiju 1 0.5 O
j[D(4)

i

uaijuD
Si 5 O

k[Ci

uwiku 5 O
k[Ci

uaiku
aii

.

5
aii

aii
Saii 2 O

j[D(1)
i

uaiju 2 O
j[D(3)

i

aij 1 0.5 O
j[D(4)

i

aij

Using (3.8) and ok[Ci
gik 5 1, we obtain

2O
j[Ci

uaiju 2 O
j[D(2)

i

uaiju 2 2 O
j[D(3)

i

uaiju 2 0.5 O
j[D(4)

i

uaijuDSi #
1

aii 2 oj[D(1)
i

uaiju 2 oj[D(3)
i

aij 1 0.5 oj[D(4)
i

aij

5
aii

aii
Saii 2O

j5/ i
uaijuD3 FO

j[Ci

uaiju 1 O
j[D(2)

i

uaiju 1 2 O
j[D(3)

i

uaiju 1 0.5 O
j[D(4)

i

uaijuG.

(4.7)
5

aii

aii 2 oj[D(1)
i

uaiju 2 oj[D(3)
i

aij 1 0.5 oj[D(4)
i

aij
Saii 2O

j?i
uaijuD

The weakly diagonally dominant matrix Am and aij , 0,
;j [ D(3)

i < D(4)
i implies that #

aii

aii 2 caii
Saii 2O

j?i
uaijuD

aii $ O
j[Ni

uaiju 5 O
j[Ci

uaiju 1 O
j[D(1)

i

uaiju
5

1
1 2 c Saii 2O

j?i
uaijuD.

1 O
j[D(2)

i

uaiju 1 O
j[D(3)

i

uaiju 1 O
j[D(4)

i

uaiju; (4.9)

The inequality (4.5) holds for any b $ 1/(1 2 c). For
the inequality (4.4), we havei.e.,
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Proof. The theorem follows from Theorem 1–O
i[F

O
k[Ci

aiiuwikuSei 2
wik

uwiku
ekD2

Theorem 6.

THEOREM 8. Suppose the matrix Am is symmetric posi-
tive definie and weakly diagonally dominant. If the condi-5O

i[F
O

k[Ci

aii

aii
? USaik 1 O

j[D(2)
i

aijgjk 2 2 O
j[D(3)

i

uaijugjk
tion (4.8) is satisfied and the interpolation weights of (3.7)–
(3.8) satisfy

2 0.5 O
j[D(4)

i

uaijugjkDU ? Sei 2
wik

uwiku
ekD2

uam
iku $ cmugm

ikuam
ii , ;i [ F m, k [ Cm

i , (4.10)

then the coarse grid operator Am11 is also symmetric positive
#O

i[F
O

k[Ci

aii

aii
? Suaiku 1 2 O

j[Di

uaijuD ? Sei 2
wik

uwiku
ekD2

definite and weakly diagonally dominant.

Proof. First, it follows from (4.1) that Am11 is symmet-
ric positive definite. Because wik 5 dik (if i, k [ C) and

#O
i[F

O
k[Ci

aii

aii
? Suaiku 1 2j max

j[Ci

uaijuD ? Sei 2
wik

uwiku
ekD2

.
for the reasons of symmetry, we can rewrite the entries of
the coarse grid operator Am11 in the following form:

The inequality (3.3) implies that (1/u0) uaiku $
am11

kl 5 O
i j

wm
ikam

ij wm
jlmaxk?iuaiku, ;k [ Ci . Thus, we obtain

5 am
kl 1 O

i[Fm

(wm
ikam

il 1 wm
il am

ik)

O
i[F

O
k[Ci

aiiuwikuSei 2
wik

uwiku
ekD2

1 O
i[Fm

O
j[Fm

wm
ikam

ij wm
jl

#O
i[F

O
k[Ci

aii

aii
Suaiku 1 2j ?

1
u0

uaikuD Sei 2
wik

uwiku
ekD2

5 am
kl 1 O

i[Fm
Fwm

ik Sam
il 1

1
2

am
ii wm

il D
#O

i[F
O

k[Ci

aii

aii
S1 1

2j

u0
D uaiku Sei 2

wik

uwiku
ekD2

1 wm
il Sam

ik 1
1
2

am
ii wm

ikDG
#O

i[F
O

k[Ci

aii

aii 2 caii
S1 1

2j

u0
D uaiku Sei 2

wik

uwiku
ekD2

1 O
i[Fm

O
j[Fm

j?i

wm
ikam

ij wm
jl ,

5
1

1 2 c S1 1
2j

u0
DO

i[F
O

k[Ci

uaiku Sei 2
wik

uwiku
ekD2

where k, l [ Cm. By using wm
ij /uwm

ij u 5 2 am
ij /uam

ij u in (4.8),
we have

#
1

1 2 c S1 1
2j

u0
DO

i
O
k?i

uaiku Sei 2
wik

uwiku
ekD2

.
am11

kk $ am
kk 2 2 O

i[Fm

uwm
iku Suam

iku 2
1
2

am
ii uwm

ikuD
The inequality (4.4) is satisfied for any b $ (1/(1 2 c))

2 O
i[Fm

O
j[Fm

j?i

uwm
iku uam

ij u uwm
jku ,(1 1 2j/u0). Hence the conclusion of the theorem holds

for b 5 (2/(1 2 c)) (1 1 2j/u0).

THEOREM 7. Assuming Am is a symmetric positive defi-
and

nite matrix with weakly diagonal dominance and the C-
points are picked in such a way that, for each i [ F m, j [
C m

i , then the conditions (4.8) are satisfied. Suppose that the uam11
kl u # uam

klu 1 O
i[Fm

Fuwm
ikuSuam

il u 2
1
2

am
ii uwm

il uD
interpolation formulae (3.7)–(3.8) and the Gauss–Seidel
relaxation (or the Jacobi relaxation with parameter 0 ,
wm , 2/c m

0 , c m
0 $ r((Dm)21 ? Am)) are used in the AMG 1 uwm

il uSuam
iku 2

1
2

am
ii uwm

ikuDGmethod. Then the (m, m 1 1)-two-level AMG algorithm is
convergent with factor iGmT mi1 # Ï1 2 am/bm , where

1 O
i[Fm

O
j[Fm

j?i

uwm
iku uam

ij u uwm
jl u.bm 5 (2/(1 2 cm)) (1 1 2j m/u0) . am , am is given by

Theorem 1 or Theorem 2.
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In view of the definition of S m
i and the symmetry of Am, in conjunction with the new interpolation formulae (3.7)–

(3.8) is shown to be less than one. In Theorem 8, it iswe obtain
proved that if Am is symmetric, positive definite, and
weakly diagonally dominant, then these properties are pre-am11

kk 2 O
l[C
l?k

uam11
kl u

served in the coarse grid operator Am11. Consequently,
the convergence analysis for a two-level method can be

$ am
kk 2 O

l[Cm

l?k

uam
klu 2 O

i[Fm

uwm
iku O

l[Cm

uam
il u extended to a multi-level AMG method. Our result pro-

vides the bound on the convergence factor, but it does not
guarantee that it is independent of the number of grid

2 O
i[Fm

uam
ikuS m

i 1 O
i[Fm

uwm
ikuS m

i am
ii levels. However, in practical computations, only a finite

number of grid levels is applied in an AMG method. For
symmetric, positive definite and weakly diagonally domi-2 uwm

iku O
j[Fm

j?i

S m
j uam

ij u (4.11)
nant matrix problems, our numerical results given in the
next section indicate that the convergence factor is in-
deed h-independent when conditions (4.8) and (4.10) are5 am

kk 2 O
l?k

uam
klu 1 O

i[Fm

(1 2 S m
i )uam

iku
satisfied.

2 O
i[Fm

uwm
iku F O

l[Cm

uam
il u 2 S m

i am
ii 1 O

j[Fm

j?i

S m
j uam

ij uG 5. NUMERICAL RESULTS

A series of numerical experiments were tested on an
INDIGO2 Silicon Graphics workstation to evaluate the$ am

kk 2 O
l?k

uam
klu 1 O

i[Fm

(1 2 S m
i )uam

iku
performance of the new AMG methods (Methods II and
III) proposed in this paper. Numerical results were com-
pared with those obtained using the standard AMG algo-2 O

i[Fm

uwm
iku SO

l?i
uam

il u 2 S m
i am

ii D,
rithm (Method I) of Ruge and Stüben. Particular attentions
are focused on the convergence factor and the range of ap-
plications.where S m

l # 1 is used. Using the inequality (4.9), we get
The following notations are used for the results reported

in all tables:
(1 2 S m

i )uam
iku 2 uwm

iku SO
l?i

uam
il u 2 S m

i am
ii D

r: asymptotic convergence factor,

tI: computing time in seconds for one V-cycle,
5 (1 2 S m

i )uam
iku 2 uwm

iku F2am
ii tP: computing time for the setup phase,

N: number of iterations for convergence defined by irNi/
ir0i # 1026, where rN is the residual vector at the Nth iter-1 O

l?i
uam

il u 1 (1 2 S m
i )am

ii G (4.12)
ation,

$ (1 2 S m
i )uam

iku 2 uwm
iku[2(1 2 c m)am

ii (1 2 S m
i ) EQ: total number of matrix equations,

sA: ratio of the space occupied by all operators to the1 (1 2 S m
i )am

ii ]
space at the finest grid,

5 (1 2 S m
i )(uam

iku 2 c muwm
ikuam

ii ) $ 0, s V: ratio of the total number of points on all grids to
that on the finest grid.

where the inequality (4.10) is used. Hence,
In all computations, the initial iteration u0 is taken to

be random numbers uniformly distributed in [0, 1], and theam11
kk 2 O

l[C
l?k

uam11
kl u $ am

kk 2 O
l[C
l?k

uam
klu $ 0.

Gauss–Seidel relaxation is used as the smoothing operator
and u0 5 0.25. Notice that, when u1 5 0 in Method II,
the coarse grid equation is essentially constructed by a

Remark. In this section, a theoretical analysis of con- Galerkin-type algorithm. Thus the main difference be-
vergence is presented. It has been proven that for symmet- tween Method I and Method II with u1 5 0 is in the
ric, positive definite, and weakly diagonally dominant ma- interpolation formula.
trices, a uniform convergence is achieved for a two-level
AMG method. An important result presented in Theorem PROBLEM 1. Poisson problems on a unit square/cube

with Dirichlet boundary conditions. For two-dimensional7 is that the convergence factor of the AMG method used
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TABLE II TABLE III

Numerical Results for 2D–Poisson ProblemNumerical Results for 2D–Poisson Problem
with 5-Point Stencil with 9-Point Stencil

Method u1 EQ r tI tP s A s VMethod u1 EQ r tI tP s A s V

I 64 3 64 0.0339 0.07 0.42 2.21 1.68 I 64 3 64 0.0904 0.07 0.46 1.36 1.36
128 3 128 0.0933 0.29 2.07 1.35 1.35128 3 128 0.0334 0.34 1.93 2.21 1.68

II 0 64 3 64 0.0704 0.06 0.43 1.32 1.33II 0 64 3 64 0.0211 0.07 0.41 2.16 1.66
128 3 128 0.0215 0.33 1.65 2.18 1.67 128 3 128 0.0756 0.29 1.89 1.33 1.33

0.01 64 3 64 0.0202 0.07 0.39 2.16 1.66 0.01 64 3 64 0.0725 0.06 0.43 1.32 1.33
128 3 128 0.0709 0.29 1.85 1.33 1.33128 3 128 0.0204 0.33 1.57 2.18 1.67

III 1/17 64 3 64 0.128 0.06 0.44 1.33 1.33III 1/17 64 3 64 0.0597 0.07 0.38 2.20 1.68
128 3 128 0.0611 0.33 1.66 2.20 1.68 128 3 128 0.129 0.29 2.01 1.33 1.33

0.1 64 3 64 0.0576 0.06 0.38 2.20 1.68 0.1 64 3 64 0.238 0.06 0.42 1.32 1.33
128 3 128 0.327 0.29 1.88 1.33 1.33128 3 128 0.0582 0.32 1.65 2.20 1.68

2(100x1y21ux)x 2 uyy 5 f.Poisson problems, we consider the following 5-point and
9-point stencils

Here, the direction and the strength of an anisotropy prob-
lem varies over the domain. The two problems are discret-
ized on a uniform grid using the 5-point stencils. The com-1

h2 3
21

21 4 21

21
4,

1
20h2 3

21 24 21

24 20 24

21 24 21
4 . putation results are given in Tables V and VI.

In a geometric multigrid, a line relaxation must be used
for the anisotropic problems in order to ensure sufficient
smoothing when a standard coarsening is used. However,

For three-dimensional problems, the 7-point difference an AMG method with a fixed Gauss–Seidel relaxation can
approximation is applied. be used to solve these problems, since the coarsening in

1
h2 (6ui, j,k 2 ui11, j,k 2 ui21, j,k 2 ui, j11,k

TABLE IV
2 ui, j21,k 2 ui, j,k11 2 ui, j,k21) 5 fi, j,k . Numerical Results for 3D–Poisson Problem

with 7-Point Scheme
The computational results for these problems are given

Method u1 EQ r tI tP s A s Vin Tables II, III, and IV.
It follows from Tables II and III that the 9-point stencils

I 16 3 16 3 16 0.0263 0.11 1.36 3.16 1.67
requires more time for relaxation on the finest grid than 24 3 24 3 24 0.0619 0.52 5.72 3.33 1.66
the 5-point stencils, the overall computing times per cycle,

II 0 16 3 16 3 16 0.0160 0.11 1.01 2.63 1.60however, are actually somewhat reduced because sA and
24 3 24 3 24 0.0186 0.44 3.50 2.72 1.60sV are smaller for the 9-point stencils. It is generally true

that larger stencils result in a faster coarsening step.
0.01 16 3 16 3 16 0.0502 0.11 0.99 2.62 1.60

24 3 24 3 24 0.1310 0.42 3.31 2.71 1.60PROBLEM 2. Anisotropic problems on a unit square
with Dirichlet boundary conditions. The first problem is

0.005 16 3 16 3 16 0.0201 0.10 0.95 2.62 1.60
24 3 24 3 24 0.0493 0.42 3.31 2.71 1.60

2«uxx 2 uyy 5 f,
III 1/37 16 3 16 3 16 0.0583 0.11 0.99 2.84 1.65

24 3 24 3 24 0.0794 0.43 3.83 2.88 1.64where « 5 0.01 is used. This example demonstrates the
ability of the AMG method to tailor the coarsening step

0.05 16 3 16 3 16 0.0772 0.11 0.90 2.79 1.65
for a given problem. Another problem with variable coef- 24 3 24 3 24 0.1090 0.42 2.85 2.85 1.64
ficient is given as
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TABLE V TABLE VII

Computation Results for Nonsymmetric ProblemNumerical Results for Anisotropic Problem
with Constant Coefficient

Method u1 EQ r tI tP s A s V

Method u1 EQ r tI tP s A s V

I 64 3 64 0.0083 0.13 0.66 3.79 2.02
128 3 128 0.0289 0.60 3.78 4.04 2.02I 64 3 64 0.0043 0.13 0.83 4.28 2.03

128 3 128 0.0076 0.67 4.14 4.65 2.04
II 0 64 3 64 0.0092 0.12 0.64 3.70 2.00

128 3 128 0.0144 0.57 3.06 3.96 2.01II 0 64 3 64 0.0040 0.13 0.84 4.45 2.06
128 3 128 0.0057 0.67 4.03 4.87 2.09

0.01 64 3 64 0.0117 0.12 0.59 3.50 2.00
128 3 128 0.0167 0.54 2.60 3.71 2.010.01 64 3 64 0.0081 0.13 0.68 3.99 2.03

128 3 128 0.0237 0.67 3.12 4.51 2.08
III 1/17 64 3 64 0.0753 0.08 0.26 2.58 1.99

128 3 128 0.1341 0.41 1.36 2.70 2.00III 1/17 64 3 64 0.0188 0.09 0.44 2.32 1.99
128 3 128 0.0187 0.42 1.78 2.74 2.04

0.01 64 3 64 0.0753 0.08 0.27 2.61 1.99
128 3 128 0.1341 0.41 1.44 2.75 2.000.2 64 3 64 0.0162 0.09 0.36 2.53 2.02

128 3 128 0.0181 0.40 1.78 2.63 2.03

The discrete operator is based on the 5-point finite differ-each part of the domain is automatically adapted to the
ence approximation of the formdirection of stronger connections there.

For the anisotropic problems, the complexity parameters
s A and s V of Method III are less than for the other meth-
ods. Hence the computing times tI and tP are faster, even 1

h2 3
2« 1 bhey

2« 1 ah(ex 2 1) 2o 2« 1 ahex

2« 1 bh(ey 2 1)
4,though the convergence factor is slower.

PROBLEM 3. Nonsymmetric problems. Consider the
convection–diffusion equation in a unit square with Dirich-
let boundary conditions where

2«Du 1 a(x, y)ux 1 b(x, y)uy 5 f(x, y).

TABLE VI
ex 5 5

«

2ah
if ah . «

1 1
«

2ah
if ah , 2«;

1
2

if uahu # «

ey 5 5
«

2bh
if bh . «

1 1
«

2bh
if bh , 2«

1
2

if ubhu # «.

Numerical Results for Anisotropic Problem
with Variable Coefficient

Method u1 EQ r tI tP s A s V

I 64 3 64 0.1330 0.11 0.65 3.54 1.98
o denotes the sum of the surrounding coefficients. In com-128 3 128 a

putation, the functions a and b are taken as a(x, y) 5
II 0 64 3 64 0.1662 0.14 0.80 4.32 2.12 sin(f/8), b(x, y) 5 cos(f/8), and « 5 1025. The numerical

128 3 128 0.2031 0.59 3.51 4.57 2.11 reults are given in Table VII.

0.01 64 3 64 0.5983 0.13 0.70 4.04 2.11 PROBLEM 4. Biharmonic equation on a unit square. Let
128 3 128 b

III 0.01 64 3 64 0.6814 0.11 0.66 3.41 1.86
128 3 128 0.8637 0.57 3.35 4.30 1.95

D2u 5 0 on V,

uu­V 5 0,
­u
­n U

­V

5 0,0.1 64 3 64 0.7910 0.08 0.34 2.58 1.85
128 3 128 0.8792 0.43 1.64 3.02 1.94

a Method is divergent.
b Error cannot be reduced. with the following 13-point finite difference stencil:
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TABLE VIII applications, the problem can be transformed into prob-
lems of solving a linear system Ax 5 b, where the n by nComputation Results for Biharmonic Problem
coefficient matrix A is either a Toeplitz matrix or a near-

Method u1 EQ r N tI tP s A s V Toeplitz matrix. We now consider a simple Toeplitz
problem

I 32 3 32 0.889 118 0.03 0.42 2.25 1.72
64 3 64 0.866 96 0.15 1.82 2.27 1.70

128 3 128 0.856 84 0.94 7.19 2.28 1.69
A 5 (aij), aij 5 22(i2j),

II 0 32 3 32 0.457 18 0.04 0.33 2.83 1.86
64 3 64 0.464 18 0.24 1.57 2.96 1.87

128 3 128 0.493 19 1.03 6.85 3.03 1.89 where A is a symmetric full matrix with positive entries. In
this problem, we only consider three maximal off-diagonal

0.2 32 3 32 0.894 123 0.02 0.12 1.46 1.69 entries for each row, when the interpolation operators are
64 3 64 0.905 138 0.11 0.60 1.47 1.69

constructed. The numerical results are given in Table IX.128 3 128 0.896 125 0.51 2.47 1.47 1.69
Method I cannot be used to solve this problem, since all

III 1/17 32 3 32 0.463 18 0.04 0.61 3.72 1.88 entries of the matrix are positive. In [9], we modify Method
64 3 64 0.687 37 0.29 2.81 3.93 1.88 II, and a faster convergence for more complex Toeplitz

128 3 128 0.793 57 1.21 11.82 4.04 1.90 matrices was obtained.

1/33 32 3 32 0.274 11 0.08 0.85 4.36 1.91
PROBLEM 6. Queueing network problems (singular64 3 64 0.674 35 0.36 4.08 4.65 1.89

128 3 128 0.806 68 1.41 17.66 4.85 1.92 problems). Queueing networks are often analyzed to deter-
mine the behavior under different traffic situations. The
analysis indicates the effect of increasing servers on the
waiting times of customers and on the blocking of custom-
ers. In this problem, we have to solve a linear homogeneous
system. Now, consider an overflow queueing model [12]
and the linear system is given by3

1

2 28 2

1 28 20 28 1

2 28 2

1

4.

Au 5 (A0 1 R0)u 5 0,

O
i

ui 5 1, ui $ 0,

The resulting matrix equation is symmetric but not diag-
onally dominant. Furthermore, the linear system is very
ill-conditioned with a condition number O(h24), whereas where A0 5 G J In 1 In J G, R0 5 (ene*n ) J R1 , and
the condition numbers for the previous problems are
O(h22). Table VIII compares the performance of various
AMG methods.

From the results presented in Table VIII, we observe TABLE IX
that Method I gives a slow convergence factor. However,

Computation Results for Toeplitz Matrix
a much faster convergence factor is achieved and this leads
to a significant saving in the number of iterations for Method u1 EQ r tI tP s A s V

Method II, using u1 5 0. Recall that the main difference
I Unable to computebetween Method I and Method II with u1 5 0 is in the

interpolation formula. Hence, the results clearly demon-
II 0 256 0.1320 0.07 0.22 1.15 1.62

strate the effectiveness of the new interpolation proposed 512 0.1330 0.29 0.94 1.15 1.62
in this paper. Method II with u1 5 0.2 reduces the complex-

0.2 256 0.1290 0.07 0.19 1.15 1.62ity parameters s A and s V, and, hence, it provides improve-
512 0.1310 0.29 0.86 1.15 1.62ment in the setup phase but the convergence factor is in-

creased.
III 1/17 256 0.3850 0.06 0.20 1.14 1.58

512 0.3871 0.27 0.84 1.14 1.58PROBLEM 5. Toeplitz matrix. Signal processing prob-
lems arise in many applications, e.g., image restoration,

1/33 256 0.3742 0.06 0.27 1.17 1.71
seismic tomography, noise reduction, system identifica- 512 0.3757 0.29 1.13 1.17 1.71
tions, neural networking, and data compression. In these
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TABLE X PROBLEM 7. Elasticity problems. Now, consider a sys-
tem of partial differential equations. The plane-stress elas-Computation Results for Queueing Network Problem
ticity problem can be written in terms of the displacements

Method u1 EQ r tI tP s A s V u and v as

I 64 3 64 0.291 0.08 0.42 2.23 1.69
128 3 128 a uxx 1

1 2 n
2

uyy 1
1 1 n

2
vxy 5 f,

1 1 n
2

uxy 1
1 2 n

2
vxx 1 vyy 5 g, (x, y) [ (0, 1) 3 (0, 1),

II 0 64 3 64 0.127 0.10 0.48 2.40 1.72
128 3 128 0.214 0.38 1.94 2.49 1.73

0.01 64 3 64 0.164 0.08 0.46 2.34 1.72
128 3 128 0.246 0.36 1.80 2.44 1.72 where n is Possion’s ratio, chosen to be Ad. The Dirichlet

boundary conditions are used, and the problem is discret-
III 1/17 64 3 64 0.500 0.09 0.51 3.35 1.88

ised by a central difference:128 3 128 0.707 0.44 2.28 3.10 1.81

1/33 64 3 64 0.481 0.12 0.63 3.72 1.88 1
h2 (ui11, j 2 2ui, j 1 ui21, j) 1

1 2 n
2h2 (ui, j11 2 2ui, j 1 ui, j21)128 3 128 0.701 0.47 2.67 3.40 1.82

a Error cannot be reduced.
1

1 1 n
h2 (vi11, j11 2 vi21, j11 2 vi11, j21 1 vi21, j21) 1 5fi, j ;

1 2 n
2h2 (vi11, j 2 2vi, j 1 vi21, j) 1

1
h2 (vi, j11 2 2vi, j 1 vi, j21)

1
1 1 n

h2 (ui11, j11 2 ui21, j11 2 ui11, j21 1 ui21, j21) 5 gi, j .

The resulting system is solved directly by AMG methodsG 5 3
l 2e

2l l 1 e 22e

2l l 1 2e 23e

5 5 5

2l l 1 se 2se

5 5 5

2l l 1 se 2se

2l 2se

4
n3n

,
and the numerical results are reported in Table XI.

In this problem, the complexity parameters s A and s V

are larger compared to other problems since this is a diffi-
cult system. The convergence factors given by the Methods
II and III indicate that both methods are working very well.

Remark. From the results presented in this section, we
observe the following:

TABLE XIR1 5 l ?3
1

21 1 0

5 5

0 21 1

21 0

4
n3n

.
Computation Results for Elastic Problem

Method u1 EQ r tI tP s A s V

I 32 3 32 3 2 0.8407 0.12 1.51 5.41 2.02
Here, In is an identity matrix of order n, en denotes the 48 3 48 3 2 a

jth unit vector in Rn, and J denotes the Kronecker prod-
II 0 32 3 32 3 2 0.1260 0.23 1.64 8.04 2.29uct. The matrix A is of order n2 by n2 which is irreducible

48 3 48 3 2 0.2070 1.11 4.09 8.23 2.25with zero column sums, strictly positive diagonal, and non-
positive off-diagonal entries and it has a one-dimensional

0.01 32 3 32 3 2 0.3450 0.13 0.96 5.65 2.30
null-space. The computational results for the problem with 48 3 48 3 2 0.5591 0.34 2.48 5.93 2.30
parameters s 5 5, e 5 1, l 5 se 2 As(n 2 1)21 are given

III 1/17 32 3 32 3 2 0.1700 0.21 1.92 9.40 2.49in Table X.
48 3 48 3 2 0.2503 0.75 4.48 10.53 2.53This problem demonstrates that the new AMG algo-

rithms can directly apply to solve singular systems of equa-
1/24 32 3 32 3 2 0.0960 0.24 2.30 10.10 2.49

tions. In [8], we modify Method II for other queueing 48 3 48 3 2 0.1350 0.77 5.74 11.61 2.56
network problems and much faster convergence rates
are obtained. a Method is divergent.
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(1) When both Methods I and II are convergent, New algorithms are presented for the construction of
the restriction operator and the coarse-grid equations. TheMethod II with u1 5 0 gives a faster convergence for all

problems tested here. For an ill-conditioned system such proposed new AMG methods II and III are compared
to the standard AMG method I developed by Ruge andas the biharmonic equation (see Table VIII), a significant

reduction in the convergence factor and the number of Stüben. In Method II, the parameter u1 can be chosen as
a small quantity, for example, 0.01, 0.005, 0.1, or 0.2, initerations is achieved by using Method II with u1 5 0.

Notice that the improvement over Method I results are order to reduce the complexity parameters and the com-
puting time. In Method III, the parameter u1 is generallyentirely due to a more accurate interpolation formula

(3.7)–(3.8), proposed in this paper. taken to be 1/17 for 2D problems and 1/37 for 3D prob-
lems, and it can also be chosen as other values in order to(2) By varying the parameter u1 in Method II, we re-
reduce the computing time or to accelerate the conver-duce the complexity parameters s A and s V, so that less
gence.computing time is required in the setup phase and so is

Numerous computational experiments are reported in-the time needed to perform one V-cycle multigrid. How-
cluding matrix solutions that resulted from partial differen-ever, this usually leads to a larger convergence factor and,
tial equations, signal processing, and queueing networkthus, the number of iterations is increased. However, the
problems. For systems of partial differential equations,overall computing time may be reduced in some applica-
Ruge and Stüben presented the unknown approach andtions due to the improvement in the complexity param-
the point approach methods [3]. Here, the new AMG meth-eters.
ods II and III are applied directly to the systems of equa-(3) Method III is robust and can be used to solve all
tions such as the elasticity problem. Method III has alsothe problems presented here. However, it requires larger
been successfully tested for problems in computationalcomplexity parameters and convergence factor.
fluid dynamics, including the solutions of the system of

(4) The new AMG methods II and III are superior
Euler equations [7]. From our analysis and numerical re-

compared to the standard method I. It has been clearly
sults, the following conclusions are made. The standard

demonstrated by the fact that when Method I failed to
AMG method I is only efficient for the M-matrix problems.

converge for difficult problems (such as Problems 5–7),
The proposed new AMG methods II and III not only can

Methods II and III converge with good convergence
provide a fast convergence rate, but they can also be ap-

factors.
plied to more general applications, including non-diago-
nally dominant matrices.6. CONCLUDING REMARKS
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